VAISALA

Weather Radar WRS400

Features

- Fully solid-state transmitters
- Compact, modular design
- High resolution, accuracy, and sensitivity
- Fast installation and easy maintenance
- Low life-cycle costs
- Built-in automatic calibration
- Graceful degradation
- Light-weight pedestal
- Built around RVP900[™] and IRIS[™] software

Vaisala Weather Radar WRS400 is a dual-polarization X-band radar that uses solid-state transmitters.

Solid-state transmitters

Solid-state power amplifier (SSPA) transmitters provide increased observation accuracy, sensitivity, and tracking quality. The tunable transmit frequency makes it easy to avoid frequency interference.

The life-cycle costs of the SSPA transmitters are low because they do not require replacement of expensive consumable parts, in contrast to tube-based transmitters.

Thanks to continuous calibration, there is no calibration downtime.

Improved coverage with high quality

X-band frequency provides measurement data with high resolution and excellent precision for short-range meteorological surveillance. By filling gaps in radar networks, the X-band weather radar improves radar network coverage, for example, in mountainous areas, rain catchment areas, and around wind parks.

Compact design

The compact weather radar is designed for fast installation and easy maintenance.

The transceiver is located at the back of the antenna, so only a short waveguide structure is needed. The simplified signal path provides improved sensitivity. The simplified structure requires no RF rotary joints, waveguide switches, or site-specific parts. This enables increased data quality, reliability, and lower costs. Because there is no need for a large equipment room, the site construction work is less extensive, and maintenance costs lower.

The transceiver has an internal heating/ cooling system. The other units can be installed inside radar cabinet, or in other preferred location.

Graceful degradation

WRS400 has an independent SSPA transmitter for H channel and V channel. The radar design is based on reliable and redundant modules; even if one of the key components fails, the system will still maintain limited functionality.

Technical data

Operating environment for units in the radome

Operating temperature	-40 +55 °C
Operating humidity	0 100 %RH, condensing
Operating altitude/Ambient pressure	Up to 3000 m Down to 700 hPA
IP class for pedestal and transceiver	IP54

Transmitter

Туре	Fully solid-state, SSPA-based transmitters. Transmitters for H and V channels are separate and independently-modulated.
Peak power (H+V)	200 W + 200 W 400 W + 400 W
Pulse width	1 90 μs
Duty cycle	max. 10 %
Max. pulse repetition frequency	3 kHz
Cooling	Forced air
Polarization	Simultaneous Transmit and Receive (= STAR), H-only, V-only

Receiver

Туре	RF front-end, dual-channel digital receiver for horizontal and vertical polarization
Noise figure	\leq 3 dB
Linear dynamic range	> 95 dB
Image rejection	> 80 dB (with WG filters)
Recovery time after Tx pulse	\leq 5 μ s

Antenna

Туре	Center-fed parabolic reflector
Reflector diameter	1.4 m or 2.4 m
Gain	For 1.4 m antenna: > 40 dBi For 2.4 m antenna: > 45 dBi
Beam width	For 1.4 m antenna: <1.8° For 2.4 m antenna: <1°
Peak sidelobes at main polarization planes	< -25 dB
Cross-pol isolation at main polarization planes	< -30 dB
H/V alignment (squint angle)	< 0.1°

Pedestal

Туре	Semi-yoke elevation over azimuth
Scanning rates	Up to 40°/s (6.67 rpm)
Acceleration	20°/s ²
Position accuracy	±0.05° accuracy
Azimuth steering	360°
Vertical steering	-2 +92° or better
Weight	250 kg

Radar cabinet

Dimensions (w \times h \times d)	600 × 1300 × 1010 mm
Weight (without UPS, server)	100 kg
Weight (with UPS, server)	180 kg

System

Typical operating range	100 km
Frequency range	9300 9700 MHz Selectable in 100 MHz bands and tunable within the range.
Phase stability	0.5° or better
Input power	Voltage: 230 ±10 %, 50 60 Hz ±3 Hz (single-phase)
Power consumption	Typical: 1200 W
Total weight of radar (antenna, pedestal, transceiver)	With 1.4 m antenna: approx. 340 kg With 2.4 m antenna: approx. 370 kg
Noise emissions	55 dB

Signal processing

Signal processor	RVP900
Azimuth averaging	2 1024 pulses
Clutter filters	IIR, fixed, and adaptive width GMAP
Dual PRF velocity de-aliasing	2:3, 3:4, or 4:5 for 2X, 3X, or 4X de-aliasing
High sensitivity mode processing	> 3 dB improvement detection gain
IF digitizing	16 bits, up to 5 channels, up to 100 MHz sampling (WRS400: typically 83 MHz)
Number of range bins	Up to 8168 per channel
Optional data outputs	I/Q
Processing modes	PPP, FFT/DFT, Random phase 2nd trip filtering/ recovery
Range resolution	Down to 15 m (with 83 MHz sampling, down to 22 m)
Range de-aliasing by random phase	

Radar controller

Туре	Vaisala RCP8 with IRIS Radar
Scan modes	PPI, RHI, Volume, Sector, Manual, Rapid Scan
Local display	Real time, Ascope, BITE, products

Radome

Туре	Quasi-random (dual-polarization)
Typical outside diameter	For 1.4 m antenna: 2400 mm For 2.4 m antenna: 3660 mm

Published by Vaisala | B211704EN-E © Vaisala 2022

All rights reserved. Any logos and/or product names are trademarks of Vaisala or its individual partners. Any reproduction, transfer, distribution or storage of information contained in this document is strictly prohibited. All specifications — technical included — are subject to change without notice.